Volume 1 Issue 3
Dec.  2022
Turn off MathJax
Article Contents
Tianfeng LI, Jianmin SUN, Hui ZHAO, Zhenjian ZHUO. The Role of Anaplastic Lymphoma Kinase Receptor in Neuroblastoma[J]. Clinical Cancer Bulletin, 2022, 1(3): 149-156. doi: 10.11910/j.issn.2791-3937.2022.20230001
Citation: Tianfeng LI, Jianmin SUN, Hui ZHAO, Zhenjian ZHUO. The Role of Anaplastic Lymphoma Kinase Receptor in Neuroblastoma[J]. Clinical Cancer Bulletin, 2022, 1(3): 149-156. doi: 10.11910/j.issn.2791-3937.2022.20230001

The Role of Anaplastic Lymphoma Kinase Receptor in Neuroblastoma

doi: 10.11910/j.issn.2791-3937.2022.20230001
Funds:  Financial support: This work is supported by grants from the National Natural Science Foundation of China (82002633), Medical Scientific Research Foundation of Guangdong Province of China (A2019433), Shenzhen Health Family Planning System Research Project (SZBC2018012) to Tianfeng Li; The Science, Technology and Innovation Commission of Shenzhen (JCYJ20220531093213030) to Zhenjian Zhuo.
More Information
  • Neuroblastoma (NB), a frequently occurring pediatric disease, is derived from the neural crest cells in the sympathetic ganglia and adrenal medulla. Notably, it is a heterogeneous tumor consisting of many affection factors, such as the diagnosis time within the first year and the diversity of the histology and genetic features. Despite improved outcomes in NB patients, it remains a difficult clinical problem and requires new therapeutic targets and methods. The somatic acquired activation point mutations in the receptor tyrosine kinase anaplastic lymphoma kinase (ALK) represent potential targets for treating NB. Herein, we review the underlying mechanisms of ALK in NB development, the latest available strategies to block ALK constitutive activity to treat NB, and discuss the current clinical challenges of resistance to these therapies and the strategies to overcome them.

     

  • loading
  • [1]
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263(5151): 1281-4.
    [2]
    Azarova AM, Gautam G, and George RE. Emerging importance of ALK in neuroblastoma. Semin Cancer Biol. 2011;21(4): 267-75.
    [3]
    Franceschi E, De Biase D, Di Nunno V, Pession A, Tosoni A, Gatto L, et al. The clinical and prognostic role of ALK in glioblastoma. Pathol Res Pract. 2021;221: 153447.
    [4]
    Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G, et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. American Journal of Pathology. 2000;156(5): 1711-21.
    [5]
    Webb TR, Slavish J, George RE, Look AT, Xue L, Jiang Q, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009;9(3): 331-56.
    [6]
    Takita J. The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci. 2017;108(10): 1913-20.
    [7]
    Grande E, Bolos MV, and Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther. 2011;10(4): 569-79.
    [8]
    Lopez-Delisle L, Pierre-Eugene C, Louis-Brennetot C, Surdez D, Raynal V, Baulande S, et al. Activated ALK signals through the ERK-ETV5-RET pathway to drive neuroblastoma oncogenesis. Oncogene. 2018;37(11): 1417-29.
    [9]
    Powers C, Aigner A, Stoica GE, McDonnell K, and Wellstein A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. Journal of Biological Chemistry. 2002;277(16): 14153-8.
    [10]
    Li YS, Milner PG, Chauhan AK, Watson MA, Hoffman RM, Kodner CM, et al. Cloning and Expression of a Developmentally Regulated Protein That Induces Mitogenic and Neurite Outgrowth Activity. Science. 1990;250(4988): 1690-4.
    [11]
    Matsumoto K, Wanaka A, Takatsuji K, Muramatsu H, Muramatsu T, and Tohyama M. A Novel Family of Heparin-Binding Growth-Factors, Pleiotrophin and Midkine, Is Expressed in the Developing Rat Cerebral-Cortex. Dev Brain Res. 1994;79(2): 229-41.
    [12]
    Kadomatsu K, and Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 2004;204(2): 127-43.
    [13]
    Xu CY, Zhu SY, Wu MY, Han W, and Yu Y. Functional Receptors and Intracellular Signal Pathways of Midkine (MK) and Pleiotrophin (PTN). Biol Pharm Bull. 2014;37(4): 511-20.
    [14]
    Koyama-Nasu R, Haruta R, Nasu-Nishimura Y, Taniue K, Katou Y, Shirahige K, et al. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. Oncogene. 2014;33(17): 2236-44.
    [15]
    Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem. 2001;276(20): 16772-9.
    [16]
    Perez-Pinera P, Zhang W, Wang ZY, Berenson JR, and Deuel TF. Anaplastic Lymphoma Kinase is activated through the pleiotrophin/Receptor Protein Tyrosine Phosphatase (RPTP)beta/zeta signaling pathway: A unique mechanism of activation of receptor protein tyrosine kinases. Blood. 2006;108(11): 4355-.
    [17]
    Perez-Pinera P, Zhang W, Chang YC, Vega JA, and Deuel TF. Anaplastic lymphoma kinase is activated through the Pleiotrophin/Receptor protein-tyrosine phosphatase beta/zeta signaling pathway - An alternative mechanism of receptor tyrosine kinase activation. Journal of Biological Chemistry. 2007;282(39): 28683-90.
    [18]
    Mathivet T, Mazot P, and Vigny M. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)? Cell Signal. 2007;19(12): 2434-43.
    [19]
    Moog-Lutz C, Degoutin J, Gouzi JY, Frobert Y, Brunet-de Carvalho N, Bureau J, et al. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J Biol Chem. 2005;280(28): 26039-48.
    [20]
    Murray PB, Lax I, Reshetnyak A, Ligon GF, Lillquist JS, Natoli EJ, Jr. , et al. Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Sci Signal. 2015;8(360): ra6.
    [21]
    Borenas M, Umapathy G, Lai WY, Lind DE, Witek B, Guan J, et al. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J. 2021;40(3): e105784.
    [22]
    Zhang H, Pao LI, Zhou A, Brace AD, Halenbeck R, Hsu AW, et al. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome. Proc Natl Acad Sci U S A. 2014;111(44): 15741-5.
    [23]
    Guan J, Umapathy G, Yamazaki Y, Wolfstetter G, Mendoza P, Pfeifer K, et al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. Elife. 2015;4: e09811.
    [24]
    Lee HH, Norris A, Weiss JB, and Frasch M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature. 2003;425(6957): 507-12.
    [25]
    Englund C, Loren CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B, et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature. 2003;425(6957): 512-6.
    [26]
    Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4): 439-49.
    [27]
    Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997;89(4): 1394-404.
    [28]
    Liao EH, Hung W, Abrams B, and Zhen M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature. 2004;430(6997): 345-50.
    [29]
    Varshney GK, and Palmer RH. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut. Biochem Bioph Res Co. 2006;351(4): 839-46.
    [30]
    Moreno MM, Barrell WB, Godwin A, Guille M, and Liu KJ. Anaplastic lymphoma kinase (alk), a neuroblastoma associated gene, is expressed in neural crest domains during embryonic development of Xenopus. Gene Expr Patterns. 2021;40: 119183.
    [31]
    Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455(7215): 971-4.
    [32]
    Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455(7215): 967-70.
    [33]
    George RE, Sanda T, Hanna M, Frohling S, Luther W, Zhang JM, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008;455(7215): 975-8.
    [34]
    Trigg RM, and Turner SD. ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers (Basel). 2018;10(4).
    [35]
    Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215): 930-5.
    [36]
    De Brouwer S, De Preter K, Kumps C, Zabrocki P, Porcu M, Westerhout EM, et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin Cancer Res. 2010;16(17): 4353-62.
    [37]
    Vivancos Stalin L, Gualandi M, Schulte JH, Renella R, Shakhova O, and Muhlethaler-Mottet A. Expression of the Neuroblastoma-Associated ALK-F1174L Activating Mutation During Embryogenesis Impairs the Differentiation of Neural Crest Progenitors in Sympathetic Ganglia. Front Oncol. 2019;9: 275.
    [38]
    Schonherr C, Ruuth K, Yamazaki Y, Eriksson T, Christensen J, Palmer RH, et al. Activating ALK mutations found in neuroblastoma are inhibited by Crizotinib and NVP-TAE684. Biochem J. 2011;440: 405-13.
    [39]
    Somasundaram DB, Aravindan S, Gupta N, Yu Z, Baker A, and Aravindan N. ALK expression, prognostic significance, and its association with MYCN expression in MYCN non-amplified neuroblastoma. World J Pediatr. 2022;18(4): 285-93.
    [40]
    Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell. 2012;22(1): 117-30.
    [41]
    Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell. 2012;21(3): 362-73.
    [42]
    Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang LP, et al. The Neuroblastoma-Associated F1174L ALK Mutation Causes Resistance to an ALK Kinase Inhibitor in ALK-Translocated Cancers. Cancer Res. 2010;70(24): 10038-43.
    [43]
    Subramaniam MM, Piqueras M, Navarro S, and Noguera R. Aberrant copy numbers of ALK gene is a frequent genetic alteration in neuroblastomas. Hum Pathol. 2009;40(11): 1638-42.
    [44]
    Weiser D, Laudenslager M, Rappaport E, Carpenter E, Attiyeh EF, Diskin S, et al. Stratification of patients with neuroblastoma for targeted ALK inhibitor therapy. J Clin Oncol. 2011;29(15).
    [45]
    Passoni L, Longo L, Collini P, Coluccia AM, Bozzi F, Podda M, et al. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res. 2009;69(18): 7338-46.
    [46]
    Zito Marino F, Rocco G, Morabito A, Mignogna C, Intartaglia M, Liguori G, et al. A new look at the ALK gene in cancer: copy number gain and amplification. Expert Rev Anticancer Ther. 2016;16(5): 493-502.
    [47]
    McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S, et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 2008;68(9): 3389-95.
    [48]
    Bresler SC, Wood AC, Haglund EA, Courtright J, Belcastro LT, Plegaria JS, et al. Differential inhibitor sensitivity of anaplastic lymphoma kinase variants found in neuroblastoma. Sci Transl Med. 2011;3(108): 108ra14.
    [49]
    Hallberg B, and Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013;13(10): 685-700.
    [50]
    Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa A, and Sakai R. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am J Pathol. 2005;167(1): 213-22.
    [51]
    Matsumoto T, Oda Y, Hasegawa Y, Hashimura M, Oguri Y, Inoue H, et al. Anaplastic Lymphoma Kinase Overexpression Is Associated with Aggressive Phenotypic Characteristics of Ovarian High-Grade Serous Carcinoma. Am J Pathol. 2021;191(10): 1837-50.
    [52]
    Schulte JH, Bachmann HS, Brockmeyer B, Depreter K, Oberthur A, Ackermann S, et al. High ALK receptor tyrosine kinase expression supersedes ALK mutation as a determining factor of an unfavorable phenotype in primary neuroblastoma. Clin Cancer Res. 2011;17(15): 5082-92.
    [53]
    Hallberg B, and Palmer RH. The role of the ALK receptor in cancer biology. Ann Oncol. 2016;27 Suppl 3: iii4-iii15.
    [54]
    Tomiyama A, Uekita T, Kamata R, Sasaki K, Takita J, Ohira M, et al. Flotillin-1 regulates oncogenic signaling in neuroblastoma cells by regulating ALK membrane association. Cancer Res. 2014;74(14): 3790-801.
    [55]
    Uckun E, Siaw JT, Guan J, Anthonydhason V, Fuchs J, Wolfstetter G, et al. BioID-Screening Identifies PEAK1 and SHP2 as Components of the ALK Proximitome in Neuroblastoma Cells. J Mol Biol. 2021;433(19): 167158.
    [56]
    Li T, Deng Y, Shi Y, Tian R, Chen Y, Zou L, et al. Bruton's tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene. 2018;37(47): 6180-94.
    [57]
    Foster JH, Voss SD, Hall DC, Minard CG, Balis FM, Wilner K, et al. Activity of Crizotinib in Patients with ALK-Aberrant Relapsed/Refractory Neuroblastoma: A Children's Oncology Group Study (ADVL0912). Clin Cancer Res. 2021;27(13): 3543-8.
    [58]
    Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17(4): 452-63.
    [59]
    Lovly CM, Heuckmann JM, de Stanchina E, Chen H, Thomas RK, Liang C, et al. Insights into ALK-Driven Cancers Revealed through Development of Novel ALK Tyrosine Kinase Inhibitors. Cancer Res. 2011;71(14): 4920-31.
    [60]
    Munira S, Yuki R, Saito Y, and Nakayama Y. ALK Inhibitors-Induced M Phase Delay Contributes to the Suppression of Cell Proliferation. Cancers (Basel). 2020;12(4).
    [61]
    Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4(6): 662-73.
    [62]
    Kong X, Pan P, Sun H, Xia H, Wang X, Li Y, et al. Drug Discovery Targeting Anaplastic Lymphoma Kinase (ALK). J Med Chem. 2019;62(24): 10927-54.
    [63]
    Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5): 679-90.
    [64]
    Mori M, Ueno Y, Konagai S, Fushiki H, Shimada I, Kondoh Y, et al. The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice. Mol Cancer Ther. 2014;13(2): 329-40.
    [65]
    Crescenzo R, and Inghirami G. Anaplastic lymphoma kinase inhibitors. Curr Opin Pharmacol. 2015;23: 39-44.
    [66]
    Modak S, and Cheung NK. Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Invest. 2007;25(1): 67-77.
    [67]
    Cheung NK, and Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013;13(6): 397-411.
    [68]
    Wang L, and Lui VWY. Emerging Roles of ALK in Immunity and Insights for Immunotherapy. Cancers (Basel). 2020;12(2).
    [69]
    Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene. 2012;31(46): 4859-67.
    [70]
    Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28(6): 803-14.
    [71]
    Taipale M, Jarosz DF, and Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Bio. 2010;11(7): 515-28.
    [72]
    Bonvini P, Gastaldi T, Falini B, and Rosolen A. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK( + ) CD30( + ) lymphoma cells by the Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 2002;62(5): 1559-66.
    [73]
    Caleb M. Yeung REG. The Role of the Anaplastic Lymphoma Kinase Receptor in Neuroblastoma. Progressive Neuroblastoma. 2015;20: 107–20.
    [74]
    Wang M, Shen A, Zhang C, Song Z, Ai J, Liu H, et al. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J Med Chem. 2016.
    [75]
    Hallberg B, and Palmer RH. ALK and NSCLC: Targeted therapy with ALK inhibitors. F1000 Med Rep. 2011;3: 21.
    [76]
    Schulte JH, Schulte S, Heukamp LC, Astrahantseff K, Stephan H, Fischer M, et al. Targeted Therapy for Neuroblastoma: ALK Inhibitors. Klin Padiatr. 2013;225(6): 303-8.
    [77]
    Sattu K, Hochgrafe F, Wu J, Umapathy G, Schonherr C, Ruuth K, et al. Phosphoproteomic analysis of anaplastic lymphoma kinase (ALK) downstream signaling pathways identifies signal transducer and activator of transcription 3 as a functional target of activated ALK in neuroblastoma cells. Febs J. 2013;280(21): 5269-82.
    [78]
    Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci. 2018;19(11).
    [79]
    Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G, et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am J Pathol. 2000;156(5): 1711-21.
    [80]
    Umapathy G, Mendoza-Garcia P, Hallberg B, and Palmer RH. Targeting anaplastic lymphoma kinase in neuroblastoma. APMIS. 2019;127(5): 288-302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article Views(133) PDF Downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return